The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015345 Gaussian binomial coefficient [ n,7 ] for q = -6. 2
 1, -239945, 69088371619, -19251196169490725, 5393264335151280477835, -1509574711680960125598763925, 422593364163884169440003098013995, -118298673397216914972187267242547690325, 33116077152651051199781730118147946460139435 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 7..190 Index entries for linear recurrences with constant coefficients, signature (-239945,11514768594,89124308917560,-115609163009731776,-24949102541146076160,902345215627683201024,5263661621405464657920,-6140942214464815497216) FORMULA G.f.: x^7 / ( (x-1)*(279936*x+1)*(216*x+1)*(36*x-1)*(7776*x+1)*(1296*x-1)*(6*x+1)*(46656*x-1) ). - R. J. Mathar, Sep 02 2016 MATHEMATICA Table[QBinomial[n, 7, -6], {n, 7, 20}] (* Vincenzo Librandi, Nov 02 2012 *) PROG (Sage) [gaussian_binomial(n, 7, -6) for n in range(7, 15)] # Zerinvary Lajos, May 27 2009 (Magma) r:=7; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012 CROSSREFS Sequence in context: A237396 A234547 A234709 * A187960 A190388 A249194 Adjacent sequences: A015342 A015343 A015344 * A015346 A015347 A015348 KEYWORD sign,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 17:57 EST 2023. Contains 360128 sequences. (Running on oeis4.)