The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015344 Gaussian binomial coefficient [ n,7 ] for q = -5. 2
 1, -65104, 5298179796, -410635172794704, 32132285187903171546, -2509531719872244898534704, 196069714237340352552410777796, -15317750355077977702804539604534704, 1196702310087594273181943625299134137171 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 7..200 Index entries for linear recurrences with constant coefficients, signature (-65104,1059648980,3284911838000,-2057018110093750,-256633737343750000,6467584106445312500,31044006347656250000,-37252902984619140625). FORMULA G.f.: x^7 / ( (x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(78125*x+1)*(125*x+1)*(15625*x-1)*(3125*x+1) ). - R. J. Mathar, Sep 02 2016 MATHEMATICA Table[QBinomial[n, 7, -5], {n, 7, 20}] (* Vincenzo Librandi, Nov 02 2012 *) PROG (Sage) [gaussian_binomial(n, 7, -5) for n in range(7, 15)] # Zerinvary Lajos, May 27 2009 (MAGMA) r:=7; q:=-5; [&*[(1 - q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012 CROSSREFS Sequence in context: A183975 A234908 A204640 * A184148 A083608 A102277 Adjacent sequences:  A015341 A015342 A015343 * A015345 A015346 A015347 KEYWORD sign,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 05:39 EST 2020. Contains 331104 sequences. (Running on oeis4.)