login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014771
Squares of odd hexagonal numbers.
1
1, 225, 2025, 8281, 23409, 53361, 105625, 189225, 314721, 494209, 741321, 1071225, 1500625, 2047761, 2732409, 3575881, 4601025, 5832225, 7295401, 9018009, 11029041, 13359025, 16040025, 19105641, 22591009, 26532801, 30969225, 35940025, 41486481, 47651409
OFFSET
1,2
FORMULA
G.f.: x*(1+220*x+910*x^2+396*x^3+9*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. - Harvey P. Dale, Jun 23 2011
a(n) = (2*n-1)^2*(4*n-3)^2. - Wesley Ivan Hurt, Jul 31 2016
Sum_{n>=1} 1/a(n) = 2*G + 3*Pi^2/8 - Pi - 2*log(2), where G is Catalan's constant (A006752). - Amiram Eldar, Feb 27 2022
MAPLE
A014771:=n->(2*n-1)^2*(4*n-3)^2: seq(A014771(n), n=1..50); # Wesley Ivan Hurt, Jul 31 2016
MATHEMATICA
(Select[Table[n(2n-1), {n, 60}], OddQ])^2 (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 225, 2025, 8281, 23409}, 30] (* Harvey P. Dale, Jun 23 2011 *)
PROG
(Magma) [(2*n-1)^2*(4*n-3)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
Cf. A003215, (hex numbers), A014634 (odd hex numbers), A006752.
Sequence in context: A076395 A203829 A105925 * A184878 A134741 A379121
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman
STATUS
approved