login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares of odd hexagonal numbers.
1

%I #29 Feb 27 2022 05:46:58

%S 1,225,2025,8281,23409,53361,105625,189225,314721,494209,741321,

%T 1071225,1500625,2047761,2732409,3575881,4601025,5832225,7295401,

%U 9018009,11029041,13359025,16040025,19105641,22591009,26532801,30969225,35940025,41486481,47651409

%N Squares of odd hexagonal numbers.

%H Vincenzo Librandi, <a href="/A014771/b014771.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F G.f.: x*(1+220*x+910*x^2+396*x^3+9*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by _R. J. Mathar_, Sep 16 2009

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. - _Harvey P. Dale_, Jun 23 2011

%F a(n) = (2*n-1)^2*(4*n-3)^2. - _Wesley Ivan Hurt_, Jul 31 2016

%F Sum_{n>=1} 1/a(n) = 2*G + 3*Pi^2/8 - Pi - 2*log(2), where G is Catalan's constant (A006752). - _Amiram Eldar_, Feb 27 2022

%p A014771:=n->(2*n-1)^2*(4*n-3)^2: seq(A014771(n), n=1..50); # _Wesley Ivan Hurt_, Jul 31 2016

%t (Select[Table[n(2n-1), {n,60}], OddQ])^2 (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {1,225,2025,8281,23409}, 30] (* _Harvey P. Dale_, Jun 23 2011 *)

%o (Magma) [(2*n-1)^2*(4*n-3)^2 : n in [1..50]]; // _Wesley Ivan Hurt_, Jul 31 2016

%Y Cf. A003215, (hex numbers), A014634 (odd hex numbers), A006752.

%K nonn,easy

%O 1,2

%A _Mohammad K. Azarian_

%E More terms from _Erich Friedman_