login
A134741
Permutational numbers A134640 which are squares.
4
0, 1, 225, 2500, 7225, 38025, 106929, 314721, 622521, 751689, 1750329, 3111696, 6002500, 7568001, 8168164, 8282884, 10323369, 11682724, 12517444, 23367556, 23483716, 25623844, 28536964, 33292900, 39513796, 61058596, 73513476, 74545956, 94517284, 105144516, 112572100, 112656996, 132756484
OFFSET
1,3
LINKS
FORMULA
a(n) = A134742(n)^2.
MAPLE
N:= 10^10: # for terms <= N
extend:= proc(x, N, S, b, k)
local i, R;
R:= NULL;
for i in S while x + i*b^k <= N do
if k = 0 then
if issqr(x+i*b^k) then R:= R, x+i*b^k fi
else
R:= R, procname(x+i*b^k, N, subs(i=NULL, S), b, k-1)
fi
od;
R
end proc:
f:= (b, N) -> extend(0, N, [$0..(b-1)], b, b-1):
R:= 0:
for b from 2 while b^(b-2) < N do
R:= R, f(b, N);
od:
sort([R]); # Robert Israel, Sep 04 2020
MATHEMATICA
a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; a
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 07 2007
EXTENSIONS
Corrected and more terms from Robert Israel, Sep 04 2020
STATUS
approved