login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134742
Numbers whose square is a permutational number A134640.
3
0, 1, 15, 50, 85, 195, 327, 561, 789, 867, 1323, 1764, 2450, 2751, 2858, 2878, 3213, 3418, 3538, 4834, 4846, 5062, 5342, 5770, 6286, 7814, 8574, 8634, 9722, 10254, 10610, 10614, 11522, 11702, 11826, 12363, 12543, 13490, 14246, 14502, 14538, 14676, 14818, 14902, 15186, 15434, 15681, 15874, 15963
OFFSET
1,3
LINKS
FORMULA
a(n) = sqrt(A134741(n)).
MAPLE
N:= 10^5: # for terms <= N
extend:= proc(x, N, S, b, k)
local i, R;
R:= NULL;
for i in S while x + i*b^k <= N^2 do
if k = 0 then
if issqr(x+i*b^k) then R:= R, sqrt(x+i*b^k) fi
else
R:= R, procname(x+i*b^k, N, subs(i=NULL, S), b, k-1)
fi
od;
R
end proc:
f:= (b, N) -> extend(0, N, [$0..(b-1)], b, b-1):
R:= 0:
for b from 2 while b^(b-2) < N^2 do
R:= R, f(b, N);
od:
sort([R]); # Robert Israel, Sep 04 2020
MATHEMATICA
a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; Sqrt[a]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Nov 07 2007
EXTENSIONS
Corrected and more terms from Robert Israel, Sep 04 2020
STATUS
approved