|
|
A014232
|
|
Primes of form 3^m - 2.
|
|
12
|
|
|
7, 79, 241, 727, 19681, 31381059607, 450283905890997361, 36472996377170786401, 8727963568087712425891397479476727340041447, 4638397686588101979328150167890591454318967698007
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134) [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..20
Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]
Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645. [From Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009]
|
|
MATHEMATICA
|
lst={}; Do[p=3^n; If[PrimeQ[p-2], AppendTo[lst, p-2]], {n, 2*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 14 2010 *)
Select[3^Range[120]-2, PrimeQ] (* Harvey P. Dale, Aug 16 2011 *)
|
|
PROG
|
(Magma) [a: n in [1..200] | IsPrime(a) where a is 3^n-2]; // Vincenzo Librandi, Dec 07 2011
(PARI) for(n=2, 1e3, if(ispseudoprime(t=3^n-2), print1(n", "))) \\ Charles R Greathouse IV, Dec 07 2011
|
|
CROSSREFS
|
Cf. A007593, A014224.
Sequence in context: A135051 A201860 A176130 * A154592 A075896 A201475
Adjacent sequences: A014229 A014230 A014231 * A014233 A014234 A014235
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jud McCranie
|
|
STATUS
|
approved
|
|
|
|