login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013591
Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 3.
0
385, 595, 665, 770, 935, 1155, 1190, 1235, 1309, 1330, 1365, 1463, 1495, 1540, 1729, 1785, 1855, 1870, 1925, 1955, 1995, 2065, 2145, 2261, 2310, 2380, 2415, 2431, 2465, 2470, 2618, 2660, 2665, 2695, 2717, 2730, 2737, 2795, 2805, 2821
OFFSET
1,1
MAPLE
isA013591 := proc(n)
numtheory[cyclotomic](n, x) ;
{coeffs(%, x)} ;
map(abs, %) ;
if % minus {1, 2} = {} then
false;
else
true;
end if;
end proc:
for n from 1 do
if isA013591(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 28 2016
MATHEMATICA
S[ n_ ] := For[ j=1; t=0, j<n, j++, t=Cases[ CoefficientList[ Cyclotomic[ j, x ], x ], k_ /; Abs[ k ]>2 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 2822 ]
Select[Range[3000], Max[Abs[CoefficientList[Cyclotomic[#, x], x]]]>2&] (* Harvey P. Dale, Feb 27 2015 *)
CROSSREFS
Sequence in context: A274445 A227974 A069043 * A152941 A229853 A317272
KEYWORD
nonn
AUTHOR
Peter T. Wang (peterw(AT)cco.caltech.edu)
EXTENSIONS
Definition clarified by Harvey P. Dale, Feb 27 2015
STATUS
approved