login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 3.
0

%I #10 Nov 28 2016 05:01:24

%S 385,595,665,770,935,1155,1190,1235,1309,1330,1365,1463,1495,1540,

%T 1729,1785,1855,1870,1925,1955,1995,2065,2145,2261,2310,2380,2415,

%U 2431,2465,2470,2618,2660,2665,2695,2717,2730,2737,2795,2805,2821

%N Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 3.

%p isA013591 := proc(n)

%p numtheory[cyclotomic](n,x) ;

%p {coeffs(%,x)} ;

%p map(abs,%) ;

%p if % minus {1,2} = {} then

%p false;

%p else

%p true;

%p end if;

%p end proc:

%p for n from 1 do

%p if isA013591(n) then

%p print(n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 28 2016

%t S[ n_ ] := For[ j=1; t=0, j<n, j++, t=Cases[ CoefficientList[ Cyclotomic[ j, x ], x ], k_ /; Abs[ k ]>2 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 2822 ]

%t Select[Range[3000],Max[Abs[CoefficientList[Cyclotomic[#,x],x]]]>2&] (* _Harvey P. Dale_, Feb 27 2015 *)

%K nonn

%O 1,1

%A Peter T. Wang (peterw(AT)cco.caltech.edu)

%E Definition clarified by _Harvey P. Dale_, Feb 27 2015