login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013593
Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 5.
1
1785, 2145, 2717, 2805, 3135, 3570, 3705, 3795, 3885, 3927, 4290, 4641, 4785, 4845, 5005, 5115, 5187, 5291, 5313, 5355, 5434, 5610, 5655, 6270, 6279, 6435, 6545, 6699, 6765, 6783, 7035, 7095, 7140, 7215, 7293, 7315, 7410, 7455, 7590, 7735, 7770, 7854
OFFSET
1,1
COMMENTS
n is in the sequence if and only if A007947(n) is in the sequence. - Robert Israel, Aug 06 2018
LINKS
MAPLE
isA013593 := proc(n)
numtheory[cyclotomic](n, x) ;
{coeffs(%, x)} ;
map(abs, %) ;
if % minus {1, 2, 3, 4} = {} then
false;
else
true;
end if;
end proc:
for n from 1 do
if isA013593(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 28 2016
MATHEMATICA
S[ n_ ] := For[ j=1; t=0, j<n, j++, t=Cases[ CoefficientList[ Cyclotomic[ j, x ], x ], k_ /; Abs[ k ]>4 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 4845 ]
Select[Range[8000], Max[Abs[CoefficientList[Cyclotomic[#, x], x]]]>4&] (* Harvey P. Dale, Feb 27 2015 *)
PROG
(PARI) isok(n) = #select(x->abs(x) >= 5, Vec(polcyclo(n))) > 0; \\ Michel Marcus, Aug 07 2018
CROSSREFS
Cf. A007947.
Sequence in context: A317628 A114075 A232315 * A152943 A202401 A237633
KEYWORD
nonn
AUTHOR
Peter T. Wang (peterw(AT)cco.caltech.edu)
EXTENSIONS
More terms from Don Reble, Dec 09 2001
Definition clarified by Harvey P. Dale, Feb 27 2015
STATUS
approved