login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013592
Orders of cyclotomic polynomials containing a coefficient the absolute value of which is >= 4.
0
1365, 1785, 1995, 2145, 2415, 2431, 2717, 2730, 2737, 2805, 2849, 3003, 3135, 3255, 3315, 3553, 3570, 3689, 3705, 3795, 3885, 3927, 3990, 4081, 4095, 4147, 4199, 4290, 4305, 4485, 4515, 4543, 4641, 4785, 4830, 4845, 4862, 4991, 5005, 5115, 5187, 5291, 5313
OFFSET
1,1
MAPLE
isA013592 := proc(n)
numtheory[cyclotomic](n, x) ;
{coeffs(%, x)} ;
map(abs, %) ;
if % minus {1, 2, 3} = {} then
false;
else
true;
end if;
end proc:
for n from 1 do
if isA013592(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 28 2016
MATHEMATICA
S[ n_ ] := For[ j=1; t=0, j<n, j++, t=Cases[ CoefficientList[ Cyclotomic[ j, x ], x ], k_ /; Abs[ k ]>3 ]; If[ Length[ t ]!=0, Print[ j ] ] ]; S[ 4290 ]
Select[Range[6300], Max[Abs[CoefficientList[Cyclotomic[#, x], x]]]>3&] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(PARI) isok(n) = my(v = Vec(polcyclo(n))); (vecmax(v) >= 4) || (vecmin(v) <= -4); \\ Michel Marcus, Feb 26 2015
CROSSREFS
Sequence in context: A276170 A028486 A281479 * A152942 A043686 A043578
KEYWORD
nonn
AUTHOR
Peter T. Wang (peterw(AT)cco.caltech.edu)
EXTENSIONS
Definition clarified by and more terms from Harvey P. Dale, Feb 26 2015
STATUS
approved