login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012257
Irregular triangle read by rows: row 0 is {2}; if row n is {r_1, ..., r_k} then row n+1 is {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}.
14
2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14
OFFSET
0,1
COMMENTS
I have sometimes referred to this as Lionel Levine's triangle in lectures. - N. J. A. Sloane, Mar 21 2021
The shape of each row tends to a limit curve when scaled to a fixed size. It is the same limit curve as this continuous version: start with f_0=x over [0,1]; then repeatedly reverse (1-x), integrate from zero (x-x^2/2), scale to 1 (2x-x^2) and invert (1-sqrt(1-x)). For the limit curve we have f'(0) = F(1) = lim A011784(n+2)/(A011784(n+1)*A011784(n)) ~ 0.27887706 (obtained numerically). - Martin Fuller, Aug 07 2006
LINKS
N. J. A. Sloane and Brady Haran, The Levine Sequence, Numberphile video (2021)
FORMULA
Sum of row n = A011784(n+2); e.g. row 5 is {1, 1, 1, 2, 2, 3, 4} and the sum of the elements is 1+1+1+2+2+3+4 = 14 = A011784(7). - Benoit Cloitre, Aug 06 2003
T(n,A011784(n+1)) = A011784(n). - Reinhard Zumkeller, Aug 11 2014
EXAMPLE
Initial rows are:
{2},
{1,1},
{1,2},
{1,1,2},
{1,1,2,3},
{1,1,1,2,2,3,4},
{1,1,1,1,2,2,2,3,3,4,4,5,6,7},
...
MAPLE
T:= proc(n) option remember; `if`(n=0, 2, (h->
seq(i$h[-i], i=1..nops(h)))([T(n-1)]))
end:
seq(T(n), n=0..8); # Alois P. Heinz, Mar 31 2021
MATHEMATICA
row[1] = {1, 1}; row[n_] := row[n] = MapIndexed[ Function[ Table[#2 // First, {#1}]], row[n-1] // Reverse] // Flatten; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 10 2015 *)
NestList[Flatten@ MapIndexed[ConstantArray[First@ #2, #1] &, Reverse@ #] &, {1, 1}, 6] // Flatten (* Michael De Vlieger, Jul 12 2017 *)
PROG
(Haskell)
a012257 n k = a012257_tabf !! (n-1) !! (k-1)
a012257_row n = a012257_tabf !! (n-1)
a012257_tabf = iterate (\row -> concat $
zipWith replicate (reverse row) [1..]) [1, 1]
-- Reinhard Zumkeller, Aug 11 2014, May 30 2012
KEYWORD
nonn,tabf,nice,look
AUTHOR
Lionel Levine (levine(AT)ultranet.com)
EXTENSIONS
Initial row {2} added by N. J. A. Sloane, Mar 21 2021
STATUS
approved