This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220464 Reverse reluctant sequence of reluctant sequence A002260. 1
 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 5, 4, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order. Sequence A002260 is the reluctant sequence of sequence 1,2,3,... (A000027). LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO] FORMULA As a linear array, the sequence is a(n) = n1-t1*(t1+1)/2, where n1=(t*t+3*t+4)/2-n, t1=floor[(-1+sqrt(8*n1-7))/2], t=floor[(-1+sqrt(8*n-7))/2]. EXAMPLE The start of the sequence as triangle array T(n,k) is: 1; 1,1; 2,1,1; 1,2,1,1; 2,1,2,1,1; 3,2,1,2,1,1; . . . T(n,k)=A002260(n-k+1) PROG (Python) t=int((math.sqrt(8*n-7) - 1)/ 2) n1=(t*t+3*t+4)/2-n t1=int((math.sqrt(8*n1-7) - 1)/ 2) m=n1-t1*(t1+1)/2 CROSSREFS Cf. A002260, A004736, A220280. Sequence in context: A293811 A105141 A103961 * A215975 A071891 A046072 Adjacent sequences:  A220461 A220462 A220463 * A220465 A220466 A220467 KEYWORD easy,nonn,tabf AUTHOR Boris Putievskiy, Dec 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 13:02 EDT 2019. Contains 323393 sequences. (Running on oeis4.)