The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220463 Chebyshev numbers C_v(n) for v=1.2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(5*x/6)>=n*log(x), where theta(x)=sum_{prime p<=x}log p. 2
 59, 137, 139, 149, 223, 241, 347, 353, 383, 389, 563, 569, 593, 613, 631, 641, 821, 823, 853, 929, 937, 1009, 1013, 1061, 1069, 1277, 1279, 1361, 1427, 1433, 1481, 1487, 1597, 1601, 1607, 1609, 1613, 1973, 1979, 1997, 2011, 2081, 2083, 2113, 2203, 2269, 2273, 2297 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are primes. Up to a(98)=5381, all terms are 1.2-Ramanujan numbers as in Shevelev's link; up to 5381, the only missing 1.2-Ramanujan numbers are 29 and 5171. LINKS N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011. N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13 V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4 Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785 FORMULA a(n)<=prime(11*(n+1)). MATHEMATICA k=5; xs=Table[{m, Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m, {x, f[(k+1) m]-1}, AccuracyGoal->Infinity, PrecisionGoal->20, WorkingPrecision->100]]}, {m, 1, 101}]; Table[{m, 1+NestWhile[#-1&, xs[[m]][[2]], (1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1, #1], PrimeQ]]&)[#]>m&]}, {m, 1, 100}] (* Peter J. C. Moses, Dec 20 2012 *) CROSSREFS Cf. A220293, 220462. Sequence in context: A139994 A107157 A039537 * A142171 A129480 A044310 Adjacent sequences: A220460 A220461 A220462 * A220464 A220465 A220466 KEYWORD nonn AUTHOR Vladimir Shevelev, Charles R Greathouse IV and Peter J. C. Moses, Dec 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 4 19:58 EST 2023. Contains 360059 sequences. (Running on oeis4.)