login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: row 0 is {2}; if row n is {r_1, ..., r_k} then row n+1 is {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}.
14

%I #50 May 11 2024 21:54:59

%S 2,1,1,1,2,1,1,2,1,1,2,3,1,1,1,2,2,3,4,1,1,1,1,2,2,2,3,3,4,4,5,6,7,1,

%T 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,7,7,7,8,8,9,

%U 9,10,10,11,12,13,14

%N Irregular triangle read by rows: row 0 is {2}; if row n is {r_1, ..., r_k} then row n+1 is {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}.

%C I have sometimes referred to this as Lionel Levine's triangle in lectures. - _N. J. A. Sloane_, Mar 21 2021

%C The shape of each row tends to a limit curve when scaled to a fixed size. It is the same limit curve as this continuous version: start with f_0=x over [0,1]; then repeatedly reverse (1-x), integrate from zero (x-x^2/2), scale to 1 (2x-x^2) and invert (1-sqrt(1-x)). For the limit curve we have f'(0) = F(1) = lim A011784(n+2)/(A011784(n+1)*A011784(n)) ~ 0.27887706 (obtained numerically). - _Martin Fuller_, Aug 07 2006

%H Reinhard Zumkeller, <a href="/A012257/b012257.txt">Rows n = 0..9 of triangle, flattened</a>

%H N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=KNjPPFyEeLo">The Levine Sequence</a>, Numberphile video (2021)

%F Sum of row n = A011784(n+2); e.g. row 5 is {1, 1, 1, 2, 2, 3, 4} and the sum of the elements is 1+1+1+2+2+3+4 = 14 = A011784(7). - _Benoit Cloitre_, Aug 06 2003

%F T(n,A011784(n+1)) = A011784(n). - _Reinhard Zumkeller_, Aug 11 2014

%e Initial rows are:

%e {2},

%e {1,1},

%e {1,2},

%e {1,1,2},

%e {1,1,2,3},

%e {1,1,1,2,2,3,4},

%e {1,1,1,1,2,2,2,3,3,4,4,5,6,7},

%e ...

%p T:= proc(n) option remember; `if`(n=0, 2, (h->

%p seq(i$h[-i], i=1..nops(h)))([T(n-1)]))

%p end:

%p seq(T(n), n=0..8); # _Alois P. Heinz_, Mar 31 2021

%t row[1] = {1, 1}; row[n_] := row[n] = MapIndexed[ Function[ Table[#2 // First, {#1}]], row[n-1] // Reverse] // Flatten; Array[row, 7] // Flatten (* _Jean-François Alcover_, Feb 10 2015 *)

%t NestList[Flatten@ MapIndexed[ConstantArray[First@ #2, #1] &, Reverse@ #] &, {1, 1}, 6] // Flatten (* _Michael De Vlieger_, Jul 12 2017 *)

%o (Haskell)

%o a012257 n k = a012257_tabf !! (n-1) !! (k-1)

%o a012257_row n = a012257_tabf !! (n-1)

%o a012257_tabf = iterate (\row -> concat $

%o zipWith replicate (reverse row) [1..]) [1, 1]

%o -- _Reinhard Zumkeller_, Aug 11 2014, May 30 2012

%Y Cf. A001462, A011784 (row sums), A012257, A014643, A112798, A181819, A182850-A182858, A296150, A304455.

%K nonn,tabf,nice,look

%O 0,1

%A Lionel Levine (levine(AT)ultranet.com)

%E Initial row {2} added by _N. J. A. Sloane_, Mar 21 2021