login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012022
Expansion of e.g.f.: arctan(sin(arctan(x))) (odd powers only).
1
1, -5, 129, -7965, 903105, -163451925, 43259364225, -15764670046125, 7571150452490625, -4634731528895593125, 3522824632122301130625, -3255279003622294051528125, 3593928024032353882700450625
OFFSET
0,2
LINKS
FORMULA
a(n) = (2*n+1)!*(-1)^n*Sum_{j=1..n+1} binomial((2*n-1)/2, n+1-j) /(2*j-1). - Vladimir Kruchinin, May 19 2011
E.g.f.: Sum_{n >= 0} a(n)*x^(2n+1)/(2n+1)! = arctan(sin(arctan(x))).
a(n) = (2*n+1)! * [x^(2*n+1)] arctan(sin(arctan(x))).
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[ArcTan[Sin[ArcTan[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Dec 11 2013 *)
PROG
(Maxima)
a(n):= ((2*n+1)!* (-1)^n *sum(binomial((2*n-1)/2, n+1-j)/(2*j-1), j, 1, n+1)); /* Vladimir Kruchinin, May 19 2011 */
CROSSREFS
Sequence in context: A094074 A012218 A012136 * A012176 A012187 A012083
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved