OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
FORMULA
a(n) = (2*n+1)!*(-1)^n*Sum_{j=1..n+1} binomial((2*n-1)/2, n+1-j) /(2*j-1). - Vladimir Kruchinin, May 19 2011
E.g.f.: Sum_{n >= 0} a(n)*x^(2n+1)/(2n+1)! = arctan(sin(arctan(x))).
a(n) = (2*n+1)! * [x^(2*n+1)] arctan(sin(arctan(x))).
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[ArcTan[Sin[ArcTan[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, Dec 11 2013 *)
PROG
(Maxima)
a(n):= ((2*n+1)!* (-1)^n *sum(binomial((2*n-1)/2, n+1-j)/(2*j-1), j, 1, n+1)); /* Vladimir Kruchinin, May 19 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved