login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012021
Expansion of e.g.f.: tan(sin(arctan(x))) (odd powers only).
1
1, -1, 1, 167, -14303, 1383887, -170123615, 26560717367, -5162935778879, 1219537456849055, -340794504958201919, 109077799391707298759, -38112045733323708444959, 13139859774638771226676847
OFFSET
0,4
LINKS
FORMULA
a(n) = (2*n-1)!*sum(m=1..n, (sum(j=1..2*m-1, j!*2^(2*m-j-1)*(-1)^(n+j)*Stirling2(2*m-1,j)))*binomial((2*n-3)/2,(n-m))/(2*m-1)!), n>0. - Vladimir Kruchinin, May 19 2011
EXAMPLE
tan(sin(arctan(x))) = x - (1/3!)*x^3 + (1/5!)*x^5 + (167/7!)*x^7 - (14303/9!)*x^9 + ...
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Tan[x/Sqrt[1 + x^2]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 03 2015 *)
PROG
(Maxima)
a(n):=(2*n-1)!*sum((sum(j!*2^(2*m-j-1)*(-1)^(n+j)*stirling2(2*m-1, j), j, 1, 2*m-1))*binomial((2*n-3)/2, (n-m))/(2*m-1)!, m, 1, n); /* Vladimir Kruchinin, May 19 2011 */
CROSSREFS
Sequence in context: A201853 A142843 A290757 * A175558 A289743 A308280
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved