login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012020
Expansion of e.g.f.: sin(sin(arctan(x))) (odd powers only).
0
1, -4, 76, -3256, 245008, -28441216, 4700478784, -1047088053376, 302112622479616, -109527844826856448, 48716214653800569856, -26075068739563056830464, 16529214537740143196901376
OFFSET
0,2
FORMULA
a(n) = (2*n+1)!*(-1)^n*sum(j=1..n+1, binomial((2*n-1)/2,(n+1-j))/(2*j-1)!). [Vladimir Kruchinin, May 19 2011]
a(n) = (2*n+1)! * [x^(2*n+1)] sin(sin(arctan(x))).
a(n) = -4*(3*n^2-3*n+1)*a(n-1) - 12*(n-1)^2*(2*n-3)*(2*n-1)*a(n-2) - 4*(n-2)*(n-1)*(2*n-5)*(2*n-3)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Nov 08 2013
a(n) ~ (-1)^n * (2*n)^(2*n+2/3) * exp(3/2*2^(1/3)*n^(1/3)-2*n) / sqrt(3) * (1 - 19/72*2^(2/3)/n^(1/3) + 1849/5184*2^(1/3)/n^(2/3)). - Vaclav Kotesovec, Nov 08 2013
EXAMPLE
sin(sin(arctan(x)))=x-4/3!*x^3+76/5!*x^5-3256/7!*x^7+245008/9!*x^9-+...
MATHEMATICA
Table[n!*SeriesCoefficient[Sin[x/Sqrt[1+x^2]], {x, 0, n}], {n, 1, 41, 2}] (* Vaclav Kotesovec, Nov 08 2013 *)
PROG
(Maxima) a(n):=(2*n+1)!*(-1)^n*sum(binomial((2*n-1)/2, (n+1-j))/(2*j-1)!, j, 1, n+1); /* Vladimir Kruchinin, May 19 2011 */
CROSSREFS
Sequence in context: A187542 A364111 A009631 * A012041 A024258 A012101
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Definition corrected by Joerg Arndt, May 19 2011
STATUS
approved