OFFSET
1,2
FORMULA
a(n) = (2*n+1)!*sum(k=0..n, 16^(-k)*binomial(2*k,k)*(2*k+1)!*sum(i=2*k+1..2*n+1, (2^i*Stirling1(i,2*k+1)*binomial(2*n,i-1))/i!))/2. - Vladimir Kruchinin, Jun 17 2011
EXAMPLE
tan(arcsin(arctanh(x))) = x + (5/3!)*x^3 + (129/5)!*x^5 + (7797/7!)*x^7 + (848481/9!)*x^9 + ...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Tan[ArcSin[ArcTanh[x]]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, May 08 2024 *)
PROG
(Maxima)
a(n):=(2*n+1)!*sum(16^(-k)*binomial(2*k, k)*(2*k+1)!*sum((2^i*stirling1(i, 2*k+1)*binomial(2*n, i-1))/i!, i, 2*k+1, 2*n+1), k, 0, n)/2; /* Vladimir Kruchinin, Jun 17 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved