login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011877
a(n) = floor(n*(n-1)/24).
0
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 41, 44, 46, 49, 52, 55, 58, 61, 65, 68, 71, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 119, 123, 128, 133, 137, 142, 147, 152, 157, 162, 168, 173, 178, 184, 189
OFFSET
0,9
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1)
FORMULA
a(n) = +2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) -a(n-6) +2*a(n-7) -a(n-8) +a(n-9) -2*a(n-10) +a(n-11) -a(n-12) +2*a(n-13) -a(n-14) +a(n-15) -2*a(n-16) +a(n-17) -a(n-18) +2*a(n-19) -a(n-20) +a(n-21) -2*a(n-22) +a(n-23). G.f.: x^6*(1-x+x^2-x^3+x^6-x^9+x^10-x^11+x^12) / ((1-x)^3*(1+x+x^2)*(x^2+1)*(x^4+1)*(x^4-x^2+1)*(x^8-x^4+1) ). [From R. J. Mathar, Apr 15 2010]
MATHEMATICA
CoefficientList[Series[x^6*(1-x+x^2-x^3+x^6-x^9+x^10-x^11+x^12) / ((1-x)^3 *
(1+x+x^2) * (x^2+1) * (x^4+1) * (x^4-x^2+1) * (x^8-x^4+1)), {x, 0, 200}], x] (* Georg Fischer, Sep 28 2022 *)
CROSSREFS
Sequence in context: A091848 A017886 A029038 * A029064 A029037 A017875
KEYWORD
nonn,easy
AUTHOR
STATUS
approved