login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*(n-1)/24).
0

%I #11 Sep 28 2022 07:53:22

%S 0,0,0,0,0,0,1,1,2,3,3,4,5,6,7,8,10,11,12,14,15,17,19,21,23,25,27,29,

%T 31,33,36,38,41,44,46,49,52,55,58,61,65,68,71,75,78,82,86,90,94,98,

%U 102,106,110,114,119,123,128,133,137,142,147,152,157,162,168,173,178,184,189

%N a(n) = floor(n*(n-1)/24).

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1)

%F a(n) = +2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) -a(n-6) +2*a(n-7) -a(n-8) +a(n-9) -2*a(n-10) +a(n-11) -a(n-12) +2*a(n-13) -a(n-14) +a(n-15) -2*a(n-16) +a(n-17) -a(n-18) +2*a(n-19) -a(n-20) +a(n-21) -2*a(n-22) +a(n-23). G.f.: x^6*(1-x+x^2-x^3+x^6-x^9+x^10-x^11+x^12) / ((1-x)^3*(1+x+x^2)*(x^2+1)*(x^4+1)*(x^4-x^2+1)*(x^8-x^4+1) ). [From _R. J. Mathar_, Apr 15 2010]

%t CoefficientList[Series[x^6*(1-x+x^2-x^3+x^6-x^9+x^10-x^11+x^12) / ((1-x)^3 *

%t (1+x+x^2) * (x^2+1) * (x^4+1) * (x^4-x^2+1) * (x^8-x^4+1)), {x,0,200}], x] (* _Georg Fischer_, Sep 28 2022 *)

%K nonn,easy

%O 0,9

%A _N. J. A. Sloane_.