login
A011738
A binary m-sequence: expansion of reciprocal of x^25 + x^3 + 1 (mod 2, shifted by 24 initial 0's).
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
Sequence is 2^25-1 = 33554431-periodic. - M. F. Hasler, Feb 17 2018
REFERENCES
S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
FORMULA
G.f. = x^24/(x^25+x^3+1), over GF(2). - M. F. Hasler, Feb 17 2018
MAPLE
N:= 200: # to get a(0)..a(N)
A:= Array(0..N):
A[24]:= 1:
for n from 25 to N do A[n]:= A[n-3] + A[n-25] mod 2 od:
convert(A, list); # Robert Israel, Mar 25 2018
PROG
(PARI) A=matrix(N=25, N, i, j, if(i>1, i==j+1, setsearch([3, N], j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1, 1]) \\ M. F. Hasler, Feb 17 2018
CROSSREFS
Cf. A011655..A011745 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2).
Sequence in context: A305821 A305892 A324870 * A011737 A011736 A085982
KEYWORD
nonn
STATUS
approved