The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008963 Initial digit of Fibonacci number F(n). 24
 0, 1, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 3, 6, 1, 1, 2, 4, 7, 1, 1, 2, 4, 7, 1, 2, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 4, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Benford's law applies since the Fibonacci sequence is of exponential growth: P(d)=log_10(1+1/d), in fact among first 5000 values the digit d=1 appears 1505 times, while 5000*P(1) is about 1505.15. - Carmine Suriano, Feb 14 2011 Wlodarski observed and Webb proved that the distribution of terms of this sequence follows Benford's law. - Amiram Eldar, Sep 23 2019 LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 William Webb, Distribution of the first digits of Fibonacci numbers, The Fibonacci Quarterly, Vol. 13, No. 4 (1975), pp. 334-336. Wikipedia, Benford's law J. Wlodarski, Fibonacci and Lucas Numbers Tend to Obey Benford's Law, The Fibonacci Quarterly, Vol. 9, No. 1 (1971), pp. 87-88. FORMULA a(n) = A000030(A000045(n)). - Amiram Eldar, Sep 23 2019 MATHEMATICA Table[IntegerDigits[Fibonacci[n]][[1]], {n, 0, 100}] (* T. D. Noe, Sep 23 2011 *) PROG (PARI) vector(10001, n, f=fibonacci(n-1); f\10^(#Str(f)-1)) (Haskell) a008963 = a000030 . a000045  -- Reinhard Zumkeller, Sep 09 2015 CROSSREFS Cf. A000045, A003893 (final digit). Cf. A000030, A261607, A213201. Sequence in context: A105994 A120496 A105150 * A031324 A226251 A093086 Adjacent sequences:  A008960 A008961 A008962 * A008964 A008965 A008966 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 19:09 EDT 2020. Contains 336483 sequences. (Running on oeis4.)