login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120496
A determinant sum sequence of the D3 dihehral 2 X 2 representation.
1
0, 1, 1, 2, 3, 5, 8, 0, 126, 15124, 228599471, 52257714939029891, 2730868770648907374112617772230042, 7457644242505474665594789454437375968542531762348793682274118549669
OFFSET
0,4
FORMULA
a0 = 1/2; b0 = Sqrt[3]/2; s[6] = IdentityMatrix[2]; s[1] = {{-a0, -b0}, {b, -a0}}; s[2] = {{-a0, b0}, {-b0, -a0}}; s[4] = {{1, 0}, {0, -1}}; s[3] = {{a0, b0}, {b0, -a0}}; s[5] = {{a0, -b0}, {-b0, -a0}}; a[0] = {0, 1, 1, 2, 3, 5}; a[1] = {1, 1, 2, 3, 5, 8}; a[n_] := a[n] = {a[n - 1][[2]], a[n - 1][[3]], a[n - 1][[4]], a[n - 1][[5]], a[n - 1][[6]], Abs[ Det[Sum[a[n - 1][[i]]*s[i], {i, 1, 6}]]]} a(n) = a[n][[1]]
MATHEMATICA
(*http : // mathworld.wolfram.com/DihedralGroupD3.html*) a0 = 1/2; b0 = Sqrt[3]/2; s[6] = IdentityMatrix[2]; s[1] = {{-a0, -b0}, {b, -a0}}; s[2] = {{-a0, b0}, {-b0, -a0}}; s[4] = {{1, 0}, {0, -1}}; s[3] = {{a0, b0}, {b0, -a0}}; s[5] = {{a0, -b0}, {-b0, -a0}}; a[0] = {0, 1, 1, 2, 3, 5}; a[1] = {1, 1, 2, 3, 5, 8}; a[n_] := a[n] = {a[n - 1][[2]], a[n - 1][[ 3]], a[n - 1][[4]], a[n - 1][[5]], a[n - 1][[6]], Abs[ Det[Sum[a[n - 1][[i]]*s[i], {i, 1, 6}]]]} Table[a[n][[1]], {n, 0, 15}]
CROSSREFS
Sequence in context: A145380 A136740 A105994 * A105150 A008963 A031324
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Aug 06 2006
STATUS
approved