login
A008437
Expansion of Jacobi theta constant theta_2^3 /8.
5
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0
OFFSET
0,12
COMMENTS
Number of ways of writing n as the sum of three odd positive squares.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
LINKS
J. E. Jones [Lennard-Jones] and A. E. Ingham, On the calculation of certain crystal potential constants and on the cubic crystal of least potential energy, Proc. Royal Soc., A 107 (1925), 636-653 (see p. 650).
EXAMPLE
From Antti Karttunen, Jul 24 2017: (Start)
a(19) = 3 as 19 = 1+9+9 = 9+1+9 = 9+9+1.
a(27) = 4 as 27 = 1+1+25 = 1+25+1 = 25+1+1 = 9+9+9.
(End)
PROG
(Scheme) (define (A008437 n) (cond ((< n 3) 0) ((even? n) 0) (else (let loop ((k (- (A000196 n) (modulo (+ 1 (A000196 n)) 2))) (s 0)) (if (< k 1) s (loop (- k 2) (+ s (A290081 (- n (* k k)))))))))) ;; Antti Karttunen, Jul 24 2017
CROSSREFS
Equals A085121/8.
Cf. A000004 (the even bisection), A000196, A290081.
Sequence in context: A318673 A151795 A375199 * A366076 A324326 A341743
KEYWORD
nonn
AUTHOR
STATUS
approved