The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008434 Theta series of {D_6}^{+} lattice. 10
 1, 0, 0, 32, 60, 0, 0, 192, 252, 0, 0, 480, 544, 0, 0, 832, 1020, 0, 0, 1440, 1560, 0, 0, 2112, 2080, 0, 0, 2624, 3264, 0, 0, 3840, 4092, 0, 0, 4992, 4380, 0, 0, 5440, 6552, 0, 0, 7392, 8160, 0, 0, 8832, 8224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS From Robert Coquereaux, Aug 05 2017: (Start) Other avatars of {D_6}^{+} and its theta series: The lattice L4 generated by cuts of the complete graph on a set of 4 vertices (rescaled by sqrt(2)). The generalized laminated lattice Lambda_6 with minimal norm 3. The first member (k=1) of the family of lattices of SU(3) hyper-roots associated with the fusion category A_k(SU(3)); simple objects of the latter are irreducible integrable representations of the affine Lie algebra of SU(3) at level k. This lattice has to be rescaled: q --> q^2 since its minimal norm is 6 whereas the minimal norm of {D_6}^{+} is 3. The space of modular forms on Gamma_1(16) of weight 3, twisted by a Dirichlet character defined as the Kronecker character -4, has dimension 7 and basis b1,...b7, where bn has leading term q^(n-1). The theta function of {D_6}^{+} is b1 + 32 b4 + 60 b5. (End) REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 R. Coquereaux, Theta functions for lattices of SU(3) hyper-roots, arXiv:1708.00560[math.QA], 2017. M. Deza and V. Grishukhin, Delaunay Polytopes of Cut Lattices, Linear Algebra and Its Applications, 226- 228:667-685 (1995). A. Ocneanu, The Classification of subgroups of quantum SU(N), in "Quantum symmetries in theoretical physics and mathematics", Bariloche 2000, Eds. Coquereaux R., Garcia A. and Trinchero R., AMS Contemporary Mathematics, 294, pp. 133-160, (2000). End of Sec 2.5. W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum, Mathematics of Computation, Vol 45, No 171, pp. 209-221, and supplement S5-S16 (1985). FORMULA Expansion of (theta_2(q)^6 + theta_3(q)^6 + theta_4(q)^6)/2. - Seiichi Manyama, Oct 21 2018 EXAMPLE G.f. = 1 + 32*q^3 + 60*q^4 + 192*q^7 + 252*q^8 + 480*q^11 + 544*q^12 + ... - Michael Somos, Sep 09 2018 MATHEMATICA order = 50; S = (1/2) Series[    EllipticTheta[2, 0, q^2]^6 + EllipticTheta[3, 0, q^2]^6 +     EllipticTheta[4, 0, q^2]^6, {q, 0, order}]; CoefficientList[Simplify[Normal[S], Assumptions -> q > 0], q] (* Robert Coquereaux, Aug 05 2017 *) a[ n_] := With [{e1 = QPochhammer[ q^2]^12, e2 = QPochhammer[ q^4]^6, e3 = QPochhammer[ q^8]^12}, SeriesCoefficient[ (e2^6 + e1 e3 (e1 + 64 q^3 e3)) / (2 e1 e2 e3), {q, 0, n}]]; (* Michael Somos, Sep 09 2018 *) PROG (Magma) order:=50;  // Example H := DirichletGroup(16, CyclotomicField(EulerPhi(16))); chars := Elements(H); eps := chars; M := ModularForms([eps], 3); Eltseq(PowerSeries(M![1, 0, 0, 32, 60, 0, 0], order)); // Robert Coquereaux, Aug 05 2017 (MAGMA) A := Basis( ModularForms( Gamma1(16), 3), 50); A + 32*A + 60*A + 192*A + 252*A + 480*A + 544*A + 832*A + 1020*A + 1440*A + 1560*A; /* Michael Somos, Sep 09 2018 */ (PARI) {a(n) = my(A, e1, e2, e3); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2)^12; e2 = eta(x^4 + A)^6; e3 = eta(x^8 + A)^12; polcoeff( (e2^6 + e1*e3*(e1 + 64 * x^3 * e3)) / (2 * e1 * e2 * e3), n))}; /* Michael Somos, Sep 09 2018 */ CROSSREFS Cf. A290654, A290655, A287329, A287944, A288488, A288489, A288776, A288779, A288909. Sequence in context: A033907 A033549 A117478 * A130447 A116284 A138555 Adjacent sequences:  A008431 A008432 A008433 * A008435 A008436 A008437 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 01:16 EST 2021. Contains 349344 sequences. (Running on oeis4.)