login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007366 Numbers k such that phi(x) = k has exactly 2 solutions.
(Formerly M4685)
16
1, 10, 22, 28, 30, 46, 52, 54, 58, 66, 70, 78, 82, 102, 106, 110, 126, 130, 136, 138, 148, 150, 166, 172, 178, 190, 196, 198, 210, 222, 226, 228, 238, 250, 262, 268, 270, 282, 292, 294, 306, 310, 316, 330, 342, 346, 358, 366, 372, 378, 382, 388, 418, 430, 438 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Contains {2*3^(6k+1): k >= 1} as a subsequence. This is the simplest proof for the infinity of these numbers (see Sierpiński, Exercise 12, p. 237). - Franz Vrabec, Aug 21 2021

The smaller of the solutions to phi(x) = a(n) is given by A271983(n). It is conjectured that the larger solution is 2*A271983(n); or equivalently, all terms in A271983 are odd. - Jianing Song, Nov 08 2022

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

R. G. Wilson v, Letter to N. J. A. Sloane, Jul. 1992

FORMULA

#({phi^-1(a(n))}) = 2. - Torlach Rush, Dec 22 2017

EXAMPLE

10 = phi(11) = phi(22).

MAPLE

select(nops@numtheory:-invphi=2, [$1..1000]); # Robert Israel, Dec 20 2017

MATHEMATICA

a = Table[ 0, {500} ]; Do[ p = EulerPhi[ n ]; If[ p < 501, a[ [ p ] ]++ ], {n, 1, 500} ]; Select[ Range[ 500 ], a[ [ # ] ] == 2 & ]

(* Second program: *)

With[{nn = 1325}, TakeWhile[Union@ Select[KeyValueMap[{#1, Length@ #2} &, PositionIndex@ Array[EulerPhi, nn]], Last@ # == 2 &][[All, 1]], # < nn/3 &] ] (* Michael De Vlieger, Dec 20 2017 *)

CROSSREFS

Cf. A000010, A001221, A007367, A023900, A271983.

Sequence in context: A303745 A303746 A303747 * A302280 A350627 A109958

Adjacent sequences: A007363 A007364 A007365 * A007367 A007368 A007369

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein, Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 15:16 EST 2022. Contains 358534 sequences. (Running on oeis4.)