OFFSET
1,3
COMMENTS
After the initial 0, this sequence is formed by taking in turn the last 2^(n-1) elements of row n in the irregular triangle A133709. - Sean A. Irvine, Aug 14 2017
REFERENCES
F. J. Hill and G. R. Peterson, Introduction to Switching Theory and Logical Design. Wiley, NY, 3rd ed., 1981, p. 308.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
T[m_, l_] := T[m, l] = If[l == 1, 1, Sum[(-1)^i Binomial[l, i]* Binomial[2^(l - i) + m - 2, m], {i, 0, l - 1}] - Sum[StirlingS2[l, i]* T[m, i], {i, 1, l - 1}]];
Join[{{0}}, Table[Table[T[m, l], {l, 2^m - 2^(m-1), 2^m - 1}], {m, 1, 5}]] // Flatten (* Jean-François Alcover, Apr 03 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(9) corrected and more terms from Sean A. Irvine, Aug 14 2017
STATUS
approved