login
A006847
Number of extreme points of the set of n X n symmetric doubly-stochastic matrices.
(Formerly M1471)
2
1, 1, 2, 5, 14, 58, 238, 1516, 9020, 79892, 635984, 7127764, 70757968, 949723600, 11260506056, 175400319992, 2416123951952, 42776273847184, 671238787733920, 13302324582892048, 234257439470319776, 5135062189842955616, 100292619307729965152
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.24(b).
LINKS
M. Katz, On the extreme points of a certain convex polytope, J. Combin. Theory, 8 (1970), 417-423.
R. P. Stanley, Differentiably finite power series, European J. Combin., 1 (1980), 175-188.
FORMULA
A recurrence for this sequence is a(n) = a(n-1) + (n-1)^2*a(n-2) - ((n-1)*(n-2)/2)*a(n-3) - (n-1)*(n-2)*(n-3)*a(n-4). This is given in Stanley, 1980, p. 180, except that there is a typographical error in Stanley's formula (corrected here). - Jeffrey Shallit, Dec 05 2009
E.g.f.: ((1+x)/(1-x))^(1/4)*exp(1/2*x+1/2*x^2).
a(n) = n!*sum((if r=0 then 1 else sum((1/2)^k*C(k,r-k)/k!, k=1..r))*b(n-r), r=0..n), b(n)=if n=0 then 1 else 1/2+sum(2^m*C(n-1,m-1)*(-1)^(m-1)*((1/4)^m*sum(sum(C(j,m-1-3*k+2*j)*C(k,j)*3^(3*k-m+1-j)*2^(m-1-5*k+3*j)*(-1)^(m-1-3*k), j=0..k)*C(k+m-1,m-1), k=1..m-1))/m, m=2..n). - Vladimir Kruchinin, Sep 09 2010
a(n) ~ n! * 2^(-1/4)*GAMMA(3/4)*exp(1)/(Pi*n^(3/4)). - Vaclav Kotesovec, Aug 13 2013
EXAMPLE
An example for n = 4:
1 0 0 0
0 0 h h
0 h 0 h
0 h h 0
where h = 1/2.
MAPLE
A006847:= gfun:-rectoproc({a(n)=a(n-1)+(n-1)^2*a(n-2)-((n-1)*(n-2))*a(n-3)/2-(n-1)*(n-2)*(n-3)*a(n-4), a(0)=1, a(1)=1, a(2)=2, a(3)=5}, a(n), remember): seq(A006847(n), n=0..30); # Wesley Ivan Hurt, Aug 01 2015
MATHEMATICA
max = 22; f[x_] = ((1+x)/(1-x))^(1/4)*Exp[x/2+x^2/2]; CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
RecurrenceTable[{a[0]==a[1]==1, a[2]==2, a[3]==5, a[n]==a[n-1]+(n-1)^2 a[n-2]-((n-1)(n-2))/2 a[n-3]-(n-1)(n-2)(n-3)a[n-4]}, a, {n, 30}] (* Harvey P. Dale, Nov 18 2014 *)
PROG
(Maxima) b(n):=if n=0 then 1 else 1/2+sum(2^m*binomial(n-1, m-1)*(-1)^(m-1)*((1/4)^m*sum(sum(binomial(j, m-1-3*k+2*j)*binomial(k, j)*3^(3*k-m+1-j)*2^(m-1-5*k+3*j)*(-1)^(m-1-3*k), j, 0, k)*binomial(k+m-1, m-1), k, 1, m-1))/m, m, 2, n); a(n):=n!*sum((if r=0 then 1 else sum((1/2)^k*binomial(k, r-k)/k!, k, 1, r))*b(n-r), r, 0, n); /* Vladimir Kruchinin, Sep 09 2010 */
(PARI) Vec(serlaplace(((1+x)/(1-x))^(1/4)*exp(1/2*x+1/2*x^2)) + O(x^33)) \\ Gheorghe Coserea, Aug 03 2015
CROSSREFS
Cf. A053553.
Sequence in context: A174795 A243551 A110043 * A008286 A049082 A158095
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by N. J. A. Sloane, May 06 2012
STATUS
approved