OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.24(b).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
M. Katz, On the extreme points of a certain convex polytope, J. Combin. Theory, 8 (1970), 417-423.
R. P. Stanley, Differentiably finite power series, European J. Combin., 1 (1980), 175-188.
FORMULA
A recurrence for this sequence is a(n) = a(n-1) + (n-1)^2*a(n-2) - ((n-1)*(n-2)/2)*a(n-3) - (n-1)*(n-2)*(n-3)*a(n-4). This is given in Stanley, 1980, p. 180, except that there is a typographical error in Stanley's formula (corrected here). - Jeffrey Shallit, Dec 05 2009
E.g.f.: ((1+x)/(1-x))^(1/4)*exp(1/2*x+1/2*x^2).
a(n) = n!*sum((if r=0 then 1 else sum((1/2)^k*C(k,r-k)/k!, k=1..r))*b(n-r), r=0..n), b(n)=if n=0 then 1 else 1/2+sum(2^m*C(n-1,m-1)*(-1)^(m-1)*((1/4)^m*sum(sum(C(j,m-1-3*k+2*j)*C(k,j)*3^(3*k-m+1-j)*2^(m-1-5*k+3*j)*(-1)^(m-1-3*k), j=0..k)*C(k+m-1,m-1), k=1..m-1))/m, m=2..n). - Vladimir Kruchinin, Sep 09 2010
a(n) ~ n! * 2^(-1/4)*GAMMA(3/4)*exp(1)/(Pi*n^(3/4)). - Vaclav Kotesovec, Aug 13 2013
EXAMPLE
An example for n = 4:
1 0 0 0
0 0 h h
0 h 0 h
0 h h 0
where h = 1/2.
MAPLE
A006847:= gfun:-rectoproc({a(n)=a(n-1)+(n-1)^2*a(n-2)-((n-1)*(n-2))*a(n-3)/2-(n-1)*(n-2)*(n-3)*a(n-4), a(0)=1, a(1)=1, a(2)=2, a(3)=5}, a(n), remember): seq(A006847(n), n=0..30); # Wesley Ivan Hurt, Aug 01 2015
MATHEMATICA
max = 22; f[x_] = ((1+x)/(1-x))^(1/4)*Exp[x/2+x^2/2]; CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
RecurrenceTable[{a[0]==a[1]==1, a[2]==2, a[3]==5, a[n]==a[n-1]+(n-1)^2 a[n-2]-((n-1)(n-2))/2 a[n-3]-(n-1)(n-2)(n-3)a[n-4]}, a, {n, 30}] (* Harvey P. Dale, Nov 18 2014 *)
PROG
(Maxima) b(n):=if n=0 then 1 else 1/2+sum(2^m*binomial(n-1, m-1)*(-1)^(m-1)*((1/4)^m*sum(sum(binomial(j, m-1-3*k+2*j)*binomial(k, j)*3^(3*k-m+1-j)*2^(m-1-5*k+3*j)*(-1)^(m-1-3*k), j, 0, k)*binomial(k+m-1, m-1), k, 1, m-1))/m, m, 2, n); a(n):=n!*sum((if r=0 then 1 else sum((1/2)^k*binomial(k, r-k)/k!, k, 1, r))*b(n-r), r, 0, n); /* Vladimir Kruchinin, Sep 09 2010 */
(PARI) Vec(serlaplace(((1+x)/(1-x))^(1/4)*exp(1/2*x+1/2*x^2)) + O(x^33)) \\ Gheorghe Coserea, Aug 03 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, May 06 2012
STATUS
approved