login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133709
Triangle read by rows: T(m,l) = number of labeled covers of size l of a finite set of m unlabeled elements (m >= 1, 1 <= l <= 2^m - 1).
6
1, 1, 3, 3, 1, 7, 35, 140, 420, 840, 840, 1, 12, 131, 1435, 15225, 150570, 1351770, 10810800, 75675600, 454053600, 2270268000, 9081072000, 27243216000, 54486432000, 54486432000, 1, 18, 347, 7693, 185031, 4568046, 111793710, 2661422400
OFFSET
1,3
LINKS
A. P. Burger and J. H. van Vuuren, Balanced minimal covers of a finite set, Discr. Math. 307 (2007), 2853-2860.
FORMULA
Burger and van Vuuren give an explicit formula.
EXAMPLE
Triangle begins:
1
1 3 3
1 7 35 140 420 840 840
1 12 131 1435 15225 150570 1351770
MAPLE
A133709 := proc(m, l)
option remember;
if l = 1 then
1;
else
add((-1)^i*binomial(l, i)*binomial(2^(l-i)+m-2, m), i=0..l-1)
- add(combinat[stirling2](l, i)*procname(m, i), i=1..l-1) ;
end if;
end proc:
seq(seq(A133709(m, l), l=1..2^m-1), m=1..5) ; # R. J. Mathar, Nov 23 2011
MATHEMATICA
T[m_, l_] := T[m, l] = If[l == 1, 1, Sum[(-1)^i Binomial[l, i] Binomial[ 2^(l-i)+m-2, m], {i, 0, l-1}] - Sum[StirlingS2[l, i] T[m, i], {i, 1, l-1} ] ];
Table[T[m, l], {m, 1, 5}, {l, 1, 2^m-1}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
CROSSREFS
Columns are given by A055998, A133710, A133711, A133712.
Sequence in context: A261767 A355315 A300620 * A173651 A330337 A124040
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 30 2007
STATUS
approved