This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006696 a(n) = min_{k=1..n} (a(k-1) + 2^k*(n + a(n-k))); a(0) = 0. (Formerly M1836) 1
 0, 2, 8, 22, 50, 110, 226, 464, 938, 1888, 3794, 7598, 15208, 30438, 60890, 121792, 243606, 487238, 974488, 1948998, 3898034, 7796078, 15592168, 31184358, 62368754, 124737534, 249475080, 498950182, 997900402, 1995800846, 3991601704, 7983203430, 15966406898 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES M. V. Connolly and W. J. Knight, Search in an array in which probe costs grow exponentially or factorially, preprint, 1990. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 M. V. Connolly and W. J. Knight, Search in an array in which probe costs grow exponentially or factorially, preprint, 1990. PROG (PARI) geta(a, j) = if (j <= 0, 0, a[j]); lista(nn) = {print1(0, ", "); a = vector(nn); for (i = 1, nn, amin = 0; for (k = 1, i, new = geta(a, k-1) + 2^k*(i + geta(a, i-k)); if (! amin, amin = new,  amin = min(amin, new); ); ); print1(amin, ", "); a[i] = amin; ); } \\ Michel Marcus, Sep 09 2013, May 09 2014 (Haskell) a006696 n = a006696_list !! (n-1) a006696_list = 0 : f 1 [0] where    f u vs = w : f (u + 1) (w : vs) where      w = minimum \$ zipWith (+)          (reverse vs) (zipWith (*) (tail a000079_list) (map (+ u) vs)) - Reinhard Zumkeller, May 08 2014 CROSSREFS Cf. A000079. Sequence in context: A212970 A212683 A094533 * A094939 A006732 A005803 Adjacent sequences:  A006693 A006694 A006695 * A006697 A006698 A006699 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms from Michel Marcus, Sep 09 2013 Offset changed to 0 by Reinhard Zumkeller, May 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 00:17 EDT 2019. Contains 327252 sequences. (Running on oeis4.)