login
A006696
a(n) = min_{k=1..n} (a(k-1) + 2^k*(n + a(n-k))); a(0) = 0.
(Formerly M1836)
1
0, 2, 8, 22, 50, 110, 226, 464, 938, 1888, 3794, 7598, 15208, 30438, 60890, 121792, 243606, 487238, 974488, 1948998, 3898034, 7796078, 15592168, 31184358, 62368754, 124737534, 249475080, 498950182, 997900402, 1995800846, 3991601704, 7983203430, 15966406898
OFFSET
0,2
REFERENCES
M. V. Connolly and W. J. Knight, Search in an array in which probe costs grow exponentially or factorially, preprint, 1990.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. V. Connolly and W. J. Knight, Search in an array in which probe costs grow exponentially or factorially, preprint, 1990.
PROG
(PARI) geta(a, j) = if (j <= 0, 0, a[j]);
lista(nn) = {print1(0, ", "); a = vector(nn); for (i = 1, nn, amin = 0; for (k = 1, i, new = geta(a, k-1) + 2^k*(i + geta(a, i-k)); if (! amin, amin = new, amin = min(amin, new); ); ); print1(amin, ", "); a[i] = amin; ); } \\ Michel Marcus, Sep 09 2013, May 09 2014
(Haskell)
a006696 n = a006696_list !! (n-1)
a006696_list = 0 : f 1 [0] where
f u vs = w : f (u + 1) (w : vs) where
w = minimum $ zipWith (+)
(reverse vs) (zipWith (*) (tail a000079_list) (map (+ u) vs))
- Reinhard Zumkeller, May 08 2014
CROSSREFS
Cf. A000079.
Sequence in context: A212683 A346586 A094533 * A094939 A006732 A005803
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Michel Marcus, Sep 09 2013
Offset changed to 0 by Reinhard Zumkeller, May 08 2014
STATUS
approved