login
A006699
T(3,3n), where T(k,m) is the number of sequences a_1,...,a_m of integers 0,1,...,n with n=floor(m/k) such that the 'bumped' sequence b_1,...,b_m has exactly k of each of 0,...,n-1, where b_i=a_i + j (mod n+1) with minimal j>=0 such that b_0,...,b_i contain at most k elements equal to b_i.
(Formerly M5282)
2
1, 1, 42, 9529, 6421892, 9652612995, 27361464052486, 131032872291901741, 980985180215656298952, 10837828798232467724499511, 168999527708576706854487574250, 3590193461689323277342585899536097
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. A. Blake and A. G. Konheim, Big buckets are (are not) better!, J. ACM, 24 (1977), 591-606.
FORMULA
Reference gives recurrences.
Reference gives recurrences (see Mathematica code).
MATHEMATICA
T[k_, m_] := T[k, m] = If[m <= k, 1, Module[{n = Quotient[m, k]}, Sum[Binomial[m - 1, k i - 1] i T[k, k i - 1] T[k, m - k i], {i, 1, n}] + If[n k == m, 0, (n + 1)T[k, m - 1]]]]
CROSSREFS
Sequence in context: A211908 A246621 A153471 * A303055 A226262 A109817
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms and better description from Reiner Martin, Feb 08 2002
STATUS
approved