login
A006698
T(2,2n), where T(k,m) is the number of sequences a_1,...,a_m of integers 0,1,...,n with n=floor(m/k) such that the 'bumped' sequence b_1,...,b_m has exactly k of each of 0,...,n-1, where b_i=a_i + j (mod n+1) with minimal j>=0 such that b_0,...,b_i contain at most k elements equal to b_i.
(Formerly M4813)
2
1, 1, 11, 378, 27213, 3378680, 645216039, 175804806912, 64820487788537, 31093204323279744, 18824085922156535715, 14040767751007803601664, 12652731866917353207799557, 13553071929305974778937888768
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. A. Blake and A. G. Konheim, Big buckets are (are not) better!, J. ACM, 24 (1977), 591-606.
FORMULA
Reference gives recurrences.
Reference gives recurrences (see Mathematica code).
MATHEMATICA
T[k_, m_] := T[k, m] = If[m <= k, 1, Module[{n = Quotient[m, k]}, Sum[Binomial[m - 1, k i - 1] i T[k, k i - 1] T[k, m - k i], {i, 1, n}] + If[n k == m, 0, (n + 1)T[k, m - 1]]]]
CROSSREFS
Sequence in context: A333466 A018893 A051862 * A348353 A048431 A286914
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms and better description from Reiner Martin, Feb 08 2002
STATUS
approved