login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006364 Numbers n with an even number of 1's in binary, ignoring last bit.
(Formerly M4060)
2
0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21, 24, 25, 30, 31, 34, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 58, 59, 60, 61, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92, 93, 96, 97, 102, 103, 106, 107, 108, 109, 114, 115, 116, 117, 120, 121, 126, 127, 130, 131, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Equivalently, numbers n such that n has an odd number of 1's in binary if and only if n is odd. - Aaron Weiner, Jun 19 2013

REFERENCES

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.

E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 111.

R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II

Index entries for sequences related to binary expansion of n

FORMULA

Union of 2*A001969 and 2*A001969+1. With initial index 0: a(2n+1) = a(2n)+1, a(4n) = a(2n)+4n, a(4n+2) = -a(2n)+12n+6. - Ralf Stephan, Oct 17 2003

Conjecture: a(n) = 2*n + (-1)^(n-A000120(n-1)) - (3+(-1)^n)/2. - Velin Yanev, Dec 21 2016

EXAMPLE

G.f. = x + 6*x^2 + 7*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 18*x^8 + ...

MATHEMATICA

Select[Range[0, 150], EvenQ[Count[Most[IntegerDigits[#, 2]], 1]]&] (* Harvey P. Dale, Nov 03 2011 *)

a[ n_] := Which[ n < 1, 0, Mod[n, 2] > 0, a[n - 1] + 1, Mod[n, 4] > 0, 3 n - a[n/2 - 1], True, n + a[n/2]]; (* Michael Somos, Dec 21 2016 *)

PROG

(PARI) a(n)=if(n<1, 0, if(n%2==0, if(n%4==0, a(n/2)+n, -a((n-2)/2)+3*n), a(n-1)+1)) (from Ralf Stephan)

(PARI) is(n)=hammingweight(n>>1)%2==0 \\ Charles R Greathouse IV, Jun 19 2013

(Haskell)

a006364 n = a006364_list

a006364_list = filter (even . a000120. (`div` 2)) [0..]

-- Reinhard Zumkeller, Oct 03 2011

CROSSREFS

Sequence in context: A164989 A286473 A165363 * A037301 A163247 A085267

Adjacent sequences:  A006361 A006362 A006363 * A006365 A006366 A006367

KEYWORD

base,nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 17:54 EDT 2017. Contains 290892 sequences.