login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006364
Numbers k with an even number of 1's in binary, ignoring last bit.
(Formerly M4060)
4
0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21, 24, 25, 30, 31, 34, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 58, 59, 60, 61, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92, 93, 96, 97, 102, 103, 106, 107, 108, 109, 114, 115, 116, 117, 120, 121, 126, 127, 130, 131, 132
OFFSET
1,3
COMMENTS
Equivalently, numbers k such that k has an odd number of 1's in binary if and only if k is odd. - Aaron Weiner, Jun 19 2013
Numbers k with an even number of trailing zeros in the binary representation of k!, A011371(k). - Amiram Eldar, Sep 05 2024
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 111.
R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
FORMULA
Union of 2*A001969 and 2*A001969+1. With initial index 0: a(2n+1) = a(2n)+1, a(4n) = a(2n)+4n, a(4n+2) = -a(2n)+12n+6. - Ralf Stephan, Oct 17 2003
Conjecture: a(n) = 2*n + (-1)^(n-A000120(n-1)) - (3+(-1)^n)/2. - Velin Yanev, Dec 21 2016
EXAMPLE
G.f. = x + 6*x^2 + 7*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 18*x^8 + ...
MATHEMATICA
Select[Range[0, 150], EvenQ[Count[Most[IntegerDigits[#, 2]], 1]]&] (* Harvey P. Dale, Nov 03 2011 *)
a[ n_] := Which[ n < 1, 0, Mod[n, 2] > 0, a[n - 1] + 1, Mod[n, 4] > 0, 3 n - a[n/2 - 1], True, n + a[n/2]]; (* Michael Somos, Dec 21 2016 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, if(n%4==0, a(n/2)+n, -a((n-2)/2)+3*n), a(n-1)+1)) \\ Ralf Stephan
(PARI) is(n)=hammingweight(n>>1)%2==0 \\ Charles R Greathouse IV, Jun 19 2013
(Haskell)
a006364 n = a006364_list
a006364_list = filter (even . a000120. (`div` 2)) [0..]
-- Reinhard Zumkeller, Oct 03 2011
CROSSREFS
KEYWORD
base,nonn,nice,easy
STATUS
approved