login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k with an even number of 1's in binary, ignoring last bit.
(Formerly M4060)
4

%I M4060 #48 Sep 07 2024 08:53:29

%S 0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31,34,35,36,37,40,41,46,47,

%T 48,49,54,55,58,59,60,61,66,67,68,69,72,73,78,79,80,81,86,87,90,91,92,

%U 93,96,97,102,103,106,107,108,109,114,115,116,117,120,121,126,127,130,131,132

%N Numbers k with an even number of 1's in binary, ignoring last bit.

%C Equivalently, numbers k such that k has an odd number of 1's in binary if and only if k is odd. - _Aaron Weiner_, Jun 19 2013

%C Numbers k with an even number of trailing zeros in the binary representation of k!, A011371(k). - _Amiram Eldar_, Sep 05 2024

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 111.

%D R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A006364/b006364.txt">Table of n, a(n) for n = 1..10000</a>

%H J.-P. Allouche and J. Shallit, <a href="https://doi.org/10.1016/S0304-3975(03)00090-2">The Ring of k-regular Sequences, II</a>, Theoret. Computer Sci., 307 (2003), 3-29.

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.

%F Union of 2*A001969 and 2*A001969+1. With initial index 0: a(2n+1) = a(2n)+1, a(4n) = a(2n)+4n, a(4n+2) = -a(2n)+12n+6. - _Ralf Stephan_, Oct 17 2003

%F Conjecture: a(n) = 2*n + (-1)^(n-A000120(n-1)) - (3+(-1)^n)/2. - _Velin Yanev_, Dec 21 2016

%e G.f. = x + 6*x^2 + 7*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 18*x^8 + ...

%t Select[Range[0,150],EvenQ[Count[Most[IntegerDigits[#,2]],1]]&] (* _Harvey P. Dale_, Nov 03 2011 *)

%t a[ n_] := Which[ n < 1, 0, Mod[n, 2] > 0, a[n - 1] + 1, Mod[n, 4] > 0, 3 n - a[n/2 - 1], True, n + a[n/2]]; (* _Michael Somos_, Dec 21 2016 *)

%o (PARI) a(n)=if(n<1,0,if(n%2==0,if(n%4==0,a(n/2)+n,-a((n-2)/2)+3*n),a(n-1)+1)) \\ _Ralf Stephan_

%o (PARI) is(n)=hammingweight(n>>1)%2==0 \\ _Charles R Greathouse IV_, Jun 19 2013

%o (Haskell)

%o a006364 n = a006364_list

%o a006364_list = filter (even . a000120. (`div` 2)) [0..]

%o -- _Reinhard Zumkeller_, Oct 03 2011

%Y Cf. A000120, A001969, A011371.

%K base,nonn,nice,easy

%O 1,3

%A _N. J. A. Sloane_