The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006363 Number of antichains (or order ideals) in the poset B_4 X [n]; or size of the distributive lattice J(B_4 X [n]). (Formerly M5408) 0
 1, 168, 7581, 160948, 2068224, 18561984, 127234008, 706987164, 3320153661, 13583619496, 49530070161, 163806121656, 498180781144, 1408758106368, 3737505070344, 9372218674824, 22351423903953, 50960797533096, 111574385244253, 235475590500876, 480631725411720, 951504952784320, 1831615165328400, 3435931869872580 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of order preserving maps from B_4 into [n+1]. a(n) is also the number of length n+1 multichains from bottom to top in J(B_4). See Stanley reference for bijections with description in title. - Geoffrey Critzer, Jan 15 2021 REFERENCES J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1. LINKS J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy] G. Kreweras, Les prĂ©ordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. MATHEMATICA p = Subsets[Range[4]]; f[list1_, list2_] := If[ContainsAll[list2, list1], 1, 0]; \[Zeta] = Table[Table[f[p[[i]], p[[j]]], {j, 1, 16}], {i, 1, 16}]; JB4 = Complement[Subsets[Range[16]], Level[Table[Select[Subsets[Range[16]], MemberQ[#, i] && !ContainsAll[Level[Position[\[Zeta][[All, i]], 1], {2}]][#] &], {i, 2, 16}], {2}] // DeleteDuplicates]; \[Zeta]JB4 =Table[Table[f[JB4[[i]], JB4[[j]]], {j, 1, 168}], {i, 1, 168}]; \[CapitalOmega][n_] := Expand[InterpolatingPolynomial[ Table[{k, MatrixPower[\[Zeta]JB4, k][[1, 168]]}, {k, 1, 17}], n]]; Table[\[CapitalOmega][n], {n, 1, 30}] (* Geoffrey Critzer, Jan 15 2021 *) CROSSREFS Cf. A056932, A002415. Sequence in context: A227433 A003800 A278010 * A271033 A019286 A218413 Adjacent sequences:  A006360 A006361 A006362 * A006364 A006365 A006366 KEYWORD nonn AUTHOR EXTENSIONS Title corrected by Geoffrey Critzer, Jan 15 2021 a(11)-a(23) from Geoffrey Critzer, Jan 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 11:30 EDT 2022. Contains 356091 sequences. (Running on oeis4.)