login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278010 Number of nX4 0..2 arrays with every element plus 1 mod 3 equal to some element at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero. 1
0, 168, 6372, 315060, 14786448, 699721024, 33064544648, 1562794615162, 73862525475272, 3490995086193588, 164996163767656942, 7798274804678592732, 368572739436996496586, 17419989465466370579402, 823327393076197301823214 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 4 of A278014.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 51*a(n-1) -144*a(n-2) -1654*a(n-3) +5976*a(n-4) -39174*a(n-5) +463808*a(n-6) -1874712*a(n-7) +5399805*a(n-8) -24806431*a(n-9) +75441803*a(n-10) -97404603*a(n-11) +60217374*a(n-12) -70887187*a(n-13) +32387649*a(n-14) +266759370*a(n-15) -812368560*a(n-16) +75501016*a(n-17) +1273724150*a(n-18) +577484848*a(n-19) -958935560*a(n-20) +154821024*a(n-21) -36328736*a(n-22) -217728736*a(n-23) -14121280*a(n-24) -350491392*a(n-25) +39709696*a(n-26) +187244544*a(n-27) +38109184*a(n-28)

EXAMPLE

Some solutions for n=3

..0..2..2..1. .0..1..1..0. .0..2..2..1. .0..1..2..1. .0..1..2..0

..1..1..0..0. .1..2..2..1. .1..0..0..0. .0..2..0..1. .0..2..2..1

..0..1..2..1. .1..0..1..0. .2..2..1..0. .1..0..2..2. .2..1..1..1

CROSSREFS

Cf. A278014.

Sequence in context: A011785 A227433 A003800 * A006363 A271033 A019286

Adjacent sequences:  A278007 A278008 A278009 * A278011 A278012 A278013

KEYWORD

nonn

AUTHOR

R. H. Hardin, Nov 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 02:44 EDT 2019. Contains 326169 sequences. (Running on oeis4.)