login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006006
Weight distribution of [ 128,29,32 ] 2nd-order Reed-Muller code.
3
1, 0, 0, 0, 10668, 0, 5291328, 112881664, 300503590, 112881664, 5291328, 0, 10668, 0, 0, 0, 1
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978.
LINKS
E. R. Berlekamp and N. J. A. Sloane, Weight Enumerator for Second-Order Reed-Muller Codes, IEEE Trans. Information Theory, IT-16 (1970), 745-751.
Claude Carlet and Patrick Solé, The weight spectrum of several families of Reed-Muller codes, arXiv:2301.13497 [cs.IT], 2023.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
M. Terada, J. Asatani and T. Koumoto, Weight Distribution
EXAMPLE
x^128+10668*x^96*y^32+5291328*x^80*y^48+112881664*x^72*y^56+300503590*x^64*y^64+112881664*x^56*y^72+5291328*x^48*y^80+10668*x^32*y^96+y^128
The weight distribution is:
i A_i
0 1
32 10668
48 5291328
56 112881664
64 300503590
72 112881664
80 5291328
96 10668
128 1
PROG
(Magma) R := ReedMullerCode(2, 7); W<x, y> := WeightEnumerator(R); W;
CROSSREFS
Sequence in context: A250524 A251062 A238150 * A151411 A023941 A065320
KEYWORD
nonn,fini,full
STATUS
approved