|
|
A250524
|
|
Number of (n+1)X(5+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.
|
|
1
|
|
|
10660, 65310, 279161, 993123, 3183434, 9580060, 27710543, 78195145, 217483704, 600720730, 1657359573, 4587075263, 12774934710, 35868804392, 101626338475, 290581221893, 838071567940, 2435917896966, 7127659997521, 20972608975899
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 14*a(n-1) - 85*a(n-2) + 294*a(n-3) - 639*a(n-4) + 906*a(n-5) - 839*a(n-6) + 490*a(n-7) - 164*a(n-8) + 24*a(n-9).
Empirical g.f.: x*(10660 - 83930*x + 270921*x^2 - 497821*x^3 + 618997*x^4 - 570765*x^5 + 360190*x^6 - 119532*x^7 + 17496*x^8) / ((1 - x)^5*(1 - 2*x)^3*(1 - 3*x)). - Colin Barker, Nov 14 2018
|
|
EXAMPLE
|
Some solutions for n=2:
..0..1..0..0..0..1....2..2..2..2..1..2....2..1..1..0..1..0....1..1..2..0..1..0
..1..2..1..1..1..2....1..1..1..1..1..2....1..1..1..0..1..0....1..1..2..0..1..0
..0..1..1..1..1..2....0..0..0..0..1..2....1..2..2..1..2..1....0..1..2..0..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|