login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005969
Sum of fourth powers of Fibonacci numbers.
(Formerly M2106)
11
1, 2, 18, 99, 724, 4820, 33381, 227862, 1564198, 10714823, 73457064, 503438760, 3450734281, 23651386922, 162109796922, 1111115037483, 7615701104764, 52198777931900, 357775783071021, 2452231602371646, 16807845698458702
OFFSET
1,2
REFERENCES
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 19.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kunle Adegoke, Sums of fourth powers of Fibonacci and Lucas numbers, arXiv:1706.00407 [math.NT], 2017.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = Sum_{i=0..n} A056571(i).
G.f.: x*(1+x)*(x^2-5*x+1)/ ( (x^2+3*x+1)*(x^2-7*x+1)*(x-1)^2 ). - Ralf Stephan, Apr 23 2004
a(n) = (1/25)*(F(4n+2)-(-1)^n*4*F(2n+1)+6n+3) where F(n)=A000045(n). - Benoit Cloitre, Sep 13 2004. [Corrected by David Lambert (dave.lambert(AT)comcast.net), Mar 28 2008]
MAPLE
with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^4; printf(`%d, `, l[i]) od: # James A. Sellers, May 29 2000
A005969:=(z+1)*(z**2-5*z+1)/(z**2-7*z+1)/(z**2+3*z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation, offset zero
MATHEMATICA
CoefficientList[Series[(1+x)*(x^2-5*x+1)/((x^2+3*x+1)*(x^2-7*x+1)*(x- 1)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 02 2017 *)
LinearRecurrence[{6, 10, -30, 10, 6, -1}, {1, 2, 18, 99, 724, 4820}, 30] (* G. C. Greubel, Jan 17 2018 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; -1, 6, 10, -30, 10, 6]^n*[0; 1; 2; 18; 99; 724])[1, 1] \\ Charles R Greathouse IV, Sep 28 2015
(Magma) [(1/25)*(Fibonacci(4*n+2)-(-1)^n*4*Fibonacci(2*n+1)+6*n+3): n in [1..25]]; // Vincenzo Librandi, Jun 02 2017
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, May 29 2000
STATUS
approved