|
|
A005972
|
|
Partial sums of fourth powers of Lucas numbers.
(Formerly M5358)
|
|
1
|
|
|
1, 82, 338, 2739, 17380, 122356, 829637, 5709318, 39071494, 267958135, 1836197336, 12586569192, 86266785673, 591288786874, 4052734152890, 27777904133691, 190392453799372, 1304969641560028, 8944394070807629
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 21.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Kunle Adegoke, Sums of fourth powers of Fibonacci and Lucas numbers, arXiv:1706.00407 [math.NT], 2017.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
|
|
FORMULA
|
G.f.: x*(1+76*x-164*x^2-79*x^3+16*x^4)/((1-x)^2*(1+3*x+x^2)*(1-7*x+x^2)). - Ralf Stephan, Apr 23 2004
a(n) = A000045(4*n+2) + 4*(-1)^n*(A000045(n)^2 + A000045(n+1)^2) + 6*n-5. - Vaclav Kotesovec, Nov 19 2012
|
|
MAPLE
|
lucas := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(3) fi: lucas(n-1)+lucas(n-2) end: l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+lucas(i)^4; printf(`%d, `, l[i]) od: # James A. Sellers, May 29 2000
A005972:=(1+76*z-164*z**2-79*z**3+16*z**4)/(z**2-7*z+1)/(z**2+3*z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
Accumulate[LucasL[Range[20]]^4] (* Harvey P. Dale, Jul 17 2011 *)
Table[Fibonacci[4*n+2]+(-1)^n*(4*Fibonacci[n]^2+4*Fibonacci[n+1]^2)+6*n-5, {n, 1, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
CoefficientList[Series[(1 + 76 x - 164 x^2 - 79 x^3 + 16 x^4) / ((1 - x)^2 (1 + 3 x + x^2) (1 - 7 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2012 *)
|
|
CROSSREFS
|
Sequence in context: A116341 A102956 A031696 * A082972 A288920 A304416
Adjacent sequences: A005969 A005970 A005971 * A005973 A005974 A005975
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from James A. Sellers, May 29 2000
Definition clarified by Harvey P. Dale, Jul 17 2011
|
|
STATUS
|
approved
|
|
|
|