login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005376
a(n) = n - a(a(a(a(a(n-1))))).
(Formerly M0464)
4
0, 1, 1, 2, 3, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 51, 52, 52, 53, 54, 54
OFFSET
0,4
COMMENTS
Conjecture: a(n) is approximately c*n, where c is the real root of x^5+x-1 = 0, c=0.754877666246692760049508896... - Benoit Cloitre, Nov 05 2002
Rule for n-th term: a(n) = An, where An denotes the Lamé antecedent to (or right shift of) n, which is found by replacing each Lm(i) (Lm(n) = Lm(n-1) + Lm(n-5): A003520) in the Zeckendorffian expansion (obtained by repeatedly subtracting the largest Lamé number you can until nothing remains) with Lm(i-1) (A1=1). For example: 58 = 45 + 11 + 2, so a(58) = 34 + 8 + 1 = 43. - Diego Torres (torresvillarroel(AT)hotmail.com), Nov 24 2002
REFERENCES
Douglas R. Hofstadter, "Goedel, Escher, Bach", p. 137.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
H:=proc(n) option remember; if n=1 then 1 else n-H(H(H(H(H(n-1))))); fi; end proc;
MATHEMATICA
a[n_]:= a[n]= If[n<1, 0, n -a[a[a[a[a[n-1]]]]]];
Table[a[n], {n, 0, 100}] (* G. C. Greubel, Nov 16 2022 *)
PROG
(SageMath)
@CachedFunction # a = A005376
def a(n): return 0 if (n==0) else n - a(a(a(a(a(n-1)))))
[a(n) for n in range(101)] # G. C. Greubel, Nov 16 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Jul 12 2000
STATUS
approved