Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0464 #40 Apr 29 2024 13:46:45
%S 0,1,1,2,3,4,5,6,6,7,7,8,9,9,10,11,12,12,13,14,15,16,16,17,18,19,20,
%T 21,21,22,23,24,25,26,26,27,27,28,29,30,31,32,32,33,33,34,35,35,36,37,
%U 38,39,40,40,41,41,42,43,43,44,45,46,46,47,48,49,50,51,51,52,52,53,54,54
%N a(n) = n - a(a(a(a(a(n-1))))).
%C Conjecture: a(n) is approximately c*n, where c is the real root of x^5+x-1 = 0, c=0.754877666246692760049508896... - _Benoit Cloitre_, Nov 05 2002
%C Rule for n-th term: a(n) = An, where An denotes the Lamé antecedent to (or right shift of) n, which is found by replacing each Lm(i) (Lm(n) = Lm(n-1) + Lm(n-5): A003520) in the Zeckendorffian expansion (obtained by repeatedly subtracting the largest Lamé number you can until nothing remains) with Lm(i-1) (A1=1). For example: 58 = 45 + 11 + 2, so a(58) = 34 + 8 + 1 = 43. - Diego Torres (torresvillarroel(AT)hotmail.com), Nov 24 2002
%D Douglas R. Hofstadter, "Goedel, Escher, Bach", p. 137.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A005376/b005376.txt">Table of n, a(n) for n = 0..10000</a>
%H Larry Ericksen and Peter G. Anderson, <a href="http://www.cs.rit.edu/~pga/k-zeck.pdf">Patterns in differences between rows in k-Zeckendorf arrays</a>, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
%H Nick Hobson, <a href="/A005376/a005376.py.txt">Python program for this sequence</a>
%H <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>
%H <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>
%p H:=proc(n) option remember; if n=1 then 1 else n-H(H(H(H(H(n-1))))); fi; end proc;
%t a[n_]:= a[n]= If[n<1, 0, n -a[a[a[a[a[n-1]]]]]];
%t Table[a[n], {n, 0, 100}] (* _G. C. Greubel_, Nov 16 2022 *)
%o (SageMath)
%o @CachedFunction # a = A005376
%o def a(n): return 0 if (n==0) else n - a(a(a(a(a(n-1)))))
%o [a(n) for n in range(101)] # _G. C. Greubel_, Nov 16 2022
%Y Cf. A005206, A005374, A005375, A100721.
%K nonn
%O 0,4
%A _N. J. A. Sloane_
%E More terms from _James A. Sellers_, Jul 12 2000