The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003099 a(n) = Sum_{k=0..n} binomial(n,k^2). (Formerly M0576) 18
 1, 2, 3, 4, 6, 11, 22, 43, 79, 137, 231, 397, 728, 1444, 3018, 6386, 13278, 26725, 51852, 97243, 177671, 320286, 579371, 1071226, 2053626, 4098627, 8451288, 17742649, 37352435, 77926452, 159899767, 321468048, 632531039, 1219295320, 2308910353, 4314168202 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..3000 Henry W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938. [Annotated scanned copy of abstract] Henry W. Gould, Letter to N. J. A. Sloane, Nov 1973, and various attachments. Henry W. Gould, Letters to N. J. A. Sloane, Oct 1973 and Jan 1974. FORMULA a(n)*sqrt(n)/2^n is bounded: lim sup a(n)*sqrt(n)/2^n = 0.82... and lim inf a(n)*sqrt(n)/2^n = 0.58... - Benoit Cloitre, Nov 14 2003 Binomial transform of the characteristic function of squares A010052. - Carl Najafi, Sep 09 2011 MATHEMATICA Table[Sum[Binomial[n, k^2], {k, 0, Sqrt[n]}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *) PROG (PARI) a(n)=sum(k=0, sqrtint(n), binomial(n, k^2)) \\ Charles R Greathouse IV, Mar 26 2013 CROSSREFS Cf. A206849. Partial sums of A103198. Sequence in context: A114412 A352819 A016038 * A061941 A029505 A185092 Adjacent sequences:  A003096 A003097 A003098 * A003100 A003101 A003102 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Carl Najafi, Sep 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 17:06 EDT 2022. Contains 357227 sequences. (Running on oeis4.)