The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003038 Dimensions of split simple Lie algebras over any field of characteristic zero. (Formerly M2712) 3
 3, 8, 10, 14, 15, 21, 24, 28, 35, 36, 45, 48, 52, 55, 63, 66, 78, 80, 91, 99, 105, 120, 133, 136, 143, 153, 168, 171, 190, 195, 210, 224, 231, 248, 253, 255, 276, 288, 300, 323, 325, 351, 360, 378, 399, 406, 435, 440, 465, 483, 496, 528, 561, 575, 595, 624, 630 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652. N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146. I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..10000 EXAMPLE The Lie algebras in question and their dimensions are the following: A_l: l(l+2), l >= 1, B_l: l(2l+1), l >= 2, C_l: l(2l+1), l >= 3, D_l: l(2l-1), l >= 4, G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248. MAPLE M:=4200; M2:=M^2; sa:=[seq(l*(l+2), l=1..M)]; sb:=[seq(l*(2*l+1), l=2..M)]; sd:=[seq(l*(2*l-1), l=4..M)]; se:=[14, 52, 78, 133, 248]; s:=convert(sa, set) union convert(sb, set) union convert(sd, set) union convert(se, set); t:=convert(s, list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i, t[i]); fi; od: MATHEMATICA max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* Jean-François Alcover, Nov 18 2011, after Maple *) PROG (Haskell) import Data.Set (deleteFindMin, fromList, insert) a003038 n = a003038_list !! (n-1) a003038_list = f (fromList (3 : [14, 52, 78, 133, 248])) (drop 2 a005563_list) (drop 4 a000217_list) where f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Dec 16 2012 CROSSREFS Cf. A001066, A126581. Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105. Sequence in context: A137920 A263005 A126581 * A184870 A073547 A047356 Adjacent sequences: A003035 A003036 A003037 * A003039 A003040 A003041 KEYWORD nonn,nice,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 14:54 EDT 2023. Contains 365579 sequences. (Running on oeis4.)