login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073547
Numbers k such that antid(k) = antid(k+1), where antid(k) = A066272(k).
1
1, 3, 8, 10, 14, 19, 20, 22, 27, 29, 40, 42, 46, 49, 52, 58, 65, 70, 74, 75, 82, 87, 90, 91, 94, 102, 103, 112, 116, 118, 122, 124, 131, 135, 148, 149, 151, 154, 157, 159, 171, 180, 183, 187, 188, 198, 204, 205, 208, 212, 213, 214, 217, 220, 222, 227, 231, 232
OFFSET
1,2
LINKS
MAPLE
N:= 1000: # to get all terms <= N-1
V:= Vector(N):
for k from 1 to floor(N/3) do
R1:= [seq(i, i=3*k .. N, 2*k)];
V[R1]:= map(`+`, V[R1], 1);
R2:= [seq(i, i=3*k+1 .. N, 2*k+1)];
V[R2]:= map(`+`, V[R2], 1);
R3:= [seq(i, i=3*k+2 .. N, 2*k+1)];
V[R3]:= map(`+`, V[R3], 1);
od:
select(t -> V[t]=V[t+1], [$1..N-1]); # Robert Israel, Sep 26 2016
MATHEMATICA
at[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[232], at[#] == at[# + 1] &] (* Jayanta Basu, Jul 01 2013 *)
CROSSREFS
Cf. A066272.
Sequence in context: A126581 A003038 A184870 * A047356 A083246 A023492
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 31 2002
STATUS
approved