login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002721 Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) with entries satisfying 0 <= M_ijk <= n and all line sums equal to n.
(Formerly M4864 N2080)
40
1, 12, 132, 847, 3921, 14506, 45402, 124707, 308407, 699766, 1477686, 2936517, 5540107, 9993192, 17333536, 29048541, 47220357, 74703832, 115341952, 174223731, 257989821, 375191422, 536708382, 756232687, 1050823851, 1441543026, 1954172962 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) satisfying Sum_i M_ijk = n (all j,k), Sum_j M_ijk = n (all i,k), Sum_k M_ijk = n (all i,j) and 0 <= M_ijk <= n.

The constraints imply that Sum_{i,j,k} M_ijk = 9n.

This is a "magic cube" in Stanley's notation (see Stanley references). - N. J. A. Sloane, Jul 07 2014

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, Second Edition, Section 4.6.1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

A. G. Bell, Partitioning integers in n dimensions, The Computer Journal, 13 (1970), 278-283.

R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(n) = (1/4032) * m * (m * (m * (31 * m + 1004) + 6820) + 4272) + 1, where m = n*(n+1) (from the Bell reference). -  Sean A. Irvine, Jul 01 2014

G.f.: -(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1) / (x-1)^9. - Colin Barker, Jul 01 2014

EXAMPLE

Comment from N. J. A. Sloane, Jul 06 2014. Here are four of the twelve arrays showing that a(1) = 12 (each row shows top face, middle face, bottom face):

-----------

100 010 001

010 001 100

001 100 010

-----------

100 001 010

010 100 001

001 010 100

-----------

001 010 100

010 100 001

100 001 010

-----------

001 100 010

010 001 100

100 010 001

-----------

Each face must show one of the six 3 X 3 permutation matrices. There are 6 choices for the top face, and for each of these there are two choices for the second face and the third face is then determined, for a total of a(1)=6*2*1=12.

MAPLE

A002721:=n->(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+ 4272)+1: seq(A002721(n), n=0..30); # Wesley Ivan Hurt, Jul 01 2014

MATHEMATICA

CoefficientList[Series[-(x^8 + 3*x^7 + 60*x^6 + 7*x^5 + 168*x^4 + 7*x^3 + 60*x^2 + 3*x + 1)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 01 2014 *)

PROG

(PARI) Vec(-(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jul 01 2014

(MAGMA) [(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+4272)+1 : n in [0..30] ]; // Wesley Ivan Hurt, Jul 01 2014

CROSSREFS

See A001496 for the two-dimensional 4 X 4 analog. Cf. also A002817.

Sequence in context: A305261 A048643 A111085 * A340508 A119217 A334334

Adjacent sequences:  A002718 A002719 A002720 * A002722 A002723 A002724

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Sean A. Irvine, Jul 01 2014

Edited by N. J. A. Sloane, Jul 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 01:36 EDT 2021. Contains 342934 sequences. (Running on oeis4.)