The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340508 Let ped(n) denote the number of partitions of n in which the even parts are distinct (A001935); a(n) = ped(9*n+7). 1
 12, 132, 876, 4416, 18624, 69060, 232044, 720648, 2097612, 5781120, 15203904, 38387556, 93503052, 220586244, 505673280, 1129518564, 2464116480, 5260683840, 11010018840, 22623235620, 45700246668, 90863466372, 178000194348, 343888491684, 655760533632, 1235186054724 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS These are the coefficients in the left-hand side of a "surprising identity" [Hirschhorn]. REFERENCES M. D. Hirschhorn, The Power of q, Springer, 2017. See (33.1.3) page 303. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5000 FORMULA a(n) = 12 * A226034(n). MAPLE with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(      `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)     end: a:= n-> b(9*n+7): seq(a(n), n=0..25);  # Alois P. Heinz, Jan 26 2021 MATHEMATICA b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Sum[    If[Mod[d, 4] == 0, 0, d], {d, Divisors[j]}], {j, 1, n}]/n]; a[n_] := b[9n+7]; a /@ Range[0, 25] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *) CROSSREFS A subsequence of A001935. Cf. A226034. Sequence in context: A048643 A111085 A002721 * A119217 A334334 A119237 Adjacent sequences:  A340505 A340506 A340507 * A340509 A340510 A340511 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 13:54 EDT 2022. Contains 356026 sequences. (Running on oeis4.)