login
A002571
From a definite integral.
(Formerly M3802 N1553)
11
1, 5, 10, 30, 74, 199, 515, 1355, 3540, 9276, 24276, 63565, 166405, 435665, 1140574, 2986074, 7817630, 20466835, 53582855, 140281751, 367262376, 961505400, 2517253800, 6590256025, 17253514249, 45170286749, 118257345970
OFFSET
1,2
COMMENTS
a(n) are the row sums of the elements of the Golden Triangle (A180662) with alternating signs. - Alexander Adamchuk, Oct 18 2010
Limit_{n->oo} A002570(n)/A002571(n) = 1/sqrt(5). - Sean A. Irvine, Apr 09 2014
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
L. R. Shenton, A determinantal expansion for a class of definite integral. Part 5. Recurrence relations, Proc. Edinburgh Math. Soc. (2) 10 (1957), 167-188.
L. R. Shenton and K. O. Bowman, Second order continued fractions and Fibonacci numbers, Far East Journal of Applied Mathematics, 20(1), 17-31, 2005.
FORMULA
Appears to have g.f. x/((1-3x+x^2)*(1+x)^2). - Ralf Stephan, Apr 14 2004
a(n) = (-1)^n*Sum_{i=1..n+1} (-1)^(i+1)*Fibonacci(i)*Fibonacci(i+1). - Alexander Adamchuk, Jun 16 2006
From Paul D. Hanna, Feb 20 2009: (Start)
Given g.f. A(x), then log(1+A(x)) = Sum_{n>=1} A000204(n)^2 * x^n/n where A000204 is the Lucas numbers.
a(n) = (1/n)*(A000204(n)^2 + Sum_{k=1..n-1} A000204(k)^2*a(n-k)) for n>1, with a(1) = 1. (End)
G.f.: -1 + 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A006206(n), where A006206(n) is the number of aperiodic binary necklaces of length n with no subsequence 00. - Paul D. Hanna, Jan 07 2012
a(n) = 8*a(n-2) - 8*a(n-4) + a(n-6) + 2(-1)^n, n>6. - Sean A. Irvine, Apr 09 2014
a(n) - a(n-2) = Fibonacci(n+1)^2. - Peter Bala, Aug 30 2015
EXAMPLE
From Paul D. Hanna, Feb 20 2009: (Start)
G.f.: A(x) = x + 5*x^2 + 10*x^3 + 30*x^4 + 74*x^5 + 199*x^6 + ...
log(1+A(x)) = x + 3^2*x^2/2 + 4^2*x^3/3 + 7^2*x^4/4 + 11^2*x^5/5 + ... (End)
G.f.: A(x) = -1 + 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10)^2 * (1-18*x^6+x^12)^2 * (1-29*x^7-x^14)^4 * (1-47*x^8+x^16)^5 * (1-76*x^9-x^18)^8 * ...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A006206(n) * ...). - Paul D. Hanna, Jan 07 2012
MAPLE
A002571:=-(-1-4*z-z**2+z**3)/(z**2-3*z+1)/(1+z)**2; # conjectured (probably correctly) by Simon Plouffe in his 1992 dissertation
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (fibonacci(m+1)+fibonacci(m-1))^2*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Feb 20 2009
CROSSREFS
Cf. A001654, A180662 - The Golden Triangle. - Alexander Adamchuk, Oct 18 2010
Sequence in context: A156302 A156234 A048010 * A077916 A358728 A373568
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev and Alexander Adamchuk, Oct 18 2010
STATUS
approved