login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001922
Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).
(Formerly M4569 N1946)
7
1, 8, 105, 1456, 20273, 282360, 3932761, 54776288, 762935265, 10626317416, 148005508553, 2061450802320, 28712305723921, 399910829332568, 5570039304932025, 77580639439715776, 1080558912851088833, 15050244140475527880, 209622859053806301481
OFFSET
0,2
COMMENTS
Also larger of two consecutive integers whose cubes differ by a square. Defined by a(n)^3 - (a(n) - 1)^3 = square.
Let m be the n-th ratio 2/1, 7/4, 26/15, 97/56, 362/209, ... Then a(n) = m*(2-m)/(m^2-3). The numerators 2, 7, 26, ... of m are A001075. The denominators 1, 4, 15, ... of m are A001353.
From Colin Barker, Jan 06 2015: (Start)
Also indices of centered triangular numbers (A005448) which are also centered square numbers (A001844).
Also indices of centered hexagonal numbers (A003215) which are also centered octagonal numbers (A016754).
Also positive integers x in the solutions to 3*x^2 - 4*y^2 - 3*x + 4*y = 0, the corresponding values of y being A156712.
(End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Sociedad Magic Penny Patagonia, Leonardo en Patagonia
FORMULA
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (s1*t1^n + s2*t2^n + 6)/12 where s1 = 3 + 2*sqrt(3), s2 = 3 - 2*sqrt(3), t1 = 7 + 4*sqrt(3), t2 = 7 - 4*sqrt(3).
a(n) = A001075(n)*A001353(n+1).
G.f.: (1-7*x)/((1-x)*(1-14*x+x^2)). - Simon Plouffe (in his 1992 dissertation) and Colin Barker, Jan 01 2012
a(n) = A076139(n+1) - 7*A076139(n). - R. J. Mathar, Jul 14 2015
a(n) = (1/2)*(1 + ChebyshevU(n, 7) + ChebyshevU(n-1, 7)). G. C. Greubel, Oct 07 2022
EXAMPLE
8 is in the sequence because 3*8^2 - 3*8 + 1 = 169 is a square and also a centered hexagonal number. - Colin Barker, Jan 07 2015
MAPLE
seq(simplify((1 +ChebyshevU(n, 7) +ChebyshevU(n-1, 7))/2), n=0..30); # G. C. Greubel, Oct 07 2022
MATHEMATICA
With[{s1=3+2Sqrt[3], s2=3-2Sqrt[3], t1=7+4Sqrt[3], t2=7-4Sqrt[3]}, Simplify[ Table[(s1 t1^n+s2 t2^n+6)/12, {n, 0, 20}]]] (* or *) LinearRecurrence[ {15, -15, 1}, {1, 8, 105}, 21] (* Harvey P. Dale, Aug 14 2011 *)
CoefficientList[Series[(1-7*x)/(1-15*x+15*x^2-x^3), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 16 2012 *)
PROG
(Magma) I:=[1, 8, 105]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 16 2012
(PARI) Vec((1-7*x)/(1-15*x+15*x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 06 2015
(SageMath) [(1+chebyshev_U(n, 7) +chebyshev_U(n-1, 7))/2 for n in range(30)] # G. C. Greubel, Oct 07 2022
KEYWORD
nonn,easy
EXTENSIONS
Additional comments from James R. Buddenhagen, Mar 04 2001
Name improved by Colin Barker, Jan 07 2015
Edited by Robert Israel, Feb 20 2017
STATUS
approved